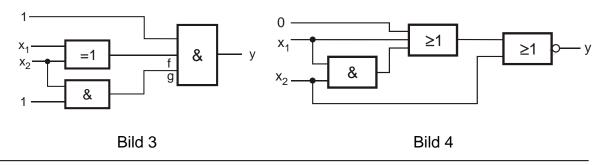

5.2 Logische Schaltungen und bistabile Kippstufen (FF)

Sachworte: Logische Schaltungen, Äquivalenz-Gatter, EXOR-Gatter, ODER-Gatter, UND-Gatter, Schaltfunktion, Flip-Flop, T-FF, D-FF, JK-FF, Frequenzteiler

Fragen

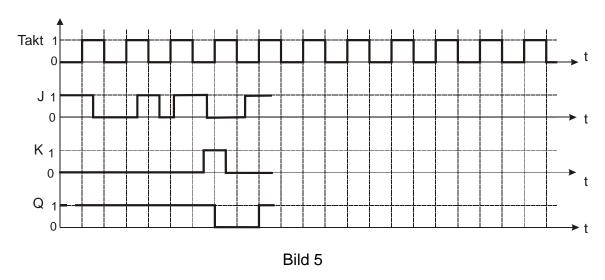
1. Aufgabe


An den beiden Eingängen des Antivalenzgatters (EXLUSIV ODER ;EXOR) von Bild 1 liegen Signale x₁ und x₂ mit einem zeitlichen Verlauf nach Bild 2.

- a) Tragen Sie in Bild 2 das sich ergebende logische Ausgangsignal y ein.
- b) Nennen Sie einen typischen Anwendungsfall aus der digitalen Längenmesstechnik, bei dem Signale nach Bild 2 zustande kommen.

2. Aufgabe

Gegeben sind die digitalen Schaltungen von Bild 3 und Bild 4.


c) Erstellen Sie für beide Schaltungen jeweils die vollständige Wertetabelle.

Schaltung Bild 3			Schaltung Bild 4		
X ₁	X ₂	у	X ₁	X ₂	у
Tabelle 1: Wertetabellen					

- d) Wie lautet für beide Schaltungen jeweils die Schaltfunktion $y = f(x_1, x_2)$?
- e) Lösen Sie für die Schaltung nach Bild 3 die Aufgabenstellung nach c) und d) in umgekehrter Reihenfolge. Bestimmen Sie zuerst die Schaltfunktion $y = f(x_1, x_2)$ und dann die Wertetabelle.

2. Aufgabe

- f) Erklären Sie die Funktionsweise eines taktflankengesteuerten D-FlipFlops. Geben Sie ein Anwendungsbeispiel an.
- g) Erklären Sie die Funktionsweise eines taktflankengesteuerten T-FlipFlops. Geben Sie ein Anwendungsbeispiel an.
- h) Erklären Sie die Funktionsweise eines taktflankengesteuerten JK-FlipFlops.
- i) Ergänzen Sie in Bild 5 das J- und das K-Signal so, dass in diesem Bereich die Frequenz des Q-Ausgangssignals halb so groß ist wie die Frequenz des Taktsignals (Frequenzteilung). Tragen Sie den gesamten Q-Verlauf ein.

